5/3-¢3
o

. | /71

} ° P
|

Task Planning and Control Synthesis for Robotic Manipulation
in Space Applications
A.C. Sanderson, M.A. Peshkin, and L.S. Homem-de-Mello
Carnegie-Mellon University
Pittsburgh, PA 15213
1. Abstract 7 -

P
/~ Space-based robotic systems for diagnosis, repair and assembly of systems will
/ require new techniques of planning and manipulation to accomplish these complex
tasks. This-papersummarizes results of work in assembly task representation,
discrete task planning, and control synthesis which provide a design environment for
flexible assembly systems in manufacturing applications, and which extend to planning | s
of manipulation operations in unstructured environments,~Assembly planning is)
carricd out using the AND/OR graph representation which encompasses all possible
partial orders of operations and may be used to plan assembly sequences. Discrete
task planning uses the configuration map which facilitates scarch over a space of
discrete operations parameters in sequential operations in order to achieve required
goals in the space of bounded configuration sets.

Vikld

IR S

\ &y

L

-

i
i
i
{
t
|
i
t
i
i
1

"2, Introduction
A
Space-pased robotic systems will be required to perform tasks involving dexterity,
perception, and planning. Telerobotic systems integrate human perception and human
planning capabilities in order to accomplish tasks. Autonomous systems will
. increasingly requird imbedded task planning systems with accompanying sensory
g integration, control shathesis, and system architecture to support goal-directed
activities in an uncertaip environment. Diagnosis, repair, and assembly are tasks
which will be essential td the maintenance of space-based systems and require both
complex manipulation as well as reasoning about system configuration and system
functionality. This paper rgviews our recent work on task planning for assembly
systems and discusses its imp\ications lor the development of robotic systems for
assembly, maintenance, repair)\and transport tasks.

Both manned and unmanned spacecraft require a variety of maintenance and repair
tasks including matcrials handling, diagnosis of faults, reasoning about the origin
of faults, hypothesis formation \and testing, planning and exccuting repair
procedures, disassembly, assembly, dpd replacement of parts. Currently these tasks
may be accomplished in a limited wdy by on-sitc manual and teleoperated systems. As
the number, complexity, cost, and \\mportance of these spacecraft incrcascs,

autonomous systems which can provide\service and maintenance on a routine basis will
become cssential.

Diagnosis and repair are problems in reasdping as well as manipulation, Any
successful approach to these issues requires a\{epresentation of the task and an
automated rcasoning system which enables a dégomposition of the problem into feasible
sensing and manipulation procedures. Qur work qn assembly planning is based on
several generations of assembly workcells which wa built and demonstrated for
manufacturing applications (1]). These flexible workcdlls incorporated multiple robot
arms, vision, tactile and force sensing to accomplish tasks in clectronic assembly,

wire harness assembly, and assembly of instrument produdts such as copiers and
printcrs. ' N

s 4 i e e et < mae - dp e hm e f e o e 5 e A te s et ——

gl 1%9/ RTERIONMALY BrAt

Our experience with implementing tasks on these prototype workcells is the basis
for current research on the development of tools for efficient design, programming,
and implementation of complex systems. Task representation, decomposition, and
sequencing [2,3,4], discrete task planning, [8] and adaptive control and learning
techniques [9] are principal issucs which are currently being addressed. Embedding
such adaptation and learning procedures in the control and planning hierarchy is
fundamental to successful implementation in uncertain environments. In this paper,
we summarize an approach to assembly task representation and sequencing, and describe
in more detail the use of the configuration map as a tool in discrete task planning.

The control functions of the system are allocated hicrarchically into Strategic,
Tactical, Operational, and Device levels, The control synthesis problem is to map
the control hierarchy onto the set of feasible assembly plans in order to achieve
desired performance. In this procedure, we seek to iteratively adjust the assignment
of system resources subject to task precedence and configuration tolerance
contraints. This procedure requires the definition of motion strategies and motion
primitives which can be employed. We have developed a detailed understanding of
sensorless manipulation strategies [5,6,7,8] which facilitate planning of sliding,
pushing, and grasping operations. We are studying control structures for vision,
tactile, and force feedback [9], and have demonstrated feasibility of adaptive
control strategies for visual servoing. This work on sensor-based control is
currently being extended to employ learning algorithms at the level of the motion
primitive in order to improve performance by local adaptation in the face of
uncertainty in the task environment. We have formulated an approach to quantitative
description of task uncertainties using entropy methods {10], and have investigated
the use of this parts entropy approach for planning strategies. We have also
developed and demonstrated a new approach to arm signature analysis which improves
the identification of kinematic models of manipulator structures and increases the
resulting positioning accuracy [11].

Implementation of robotic systems in either a telerobotic or autonomous mode will
require many of these planning, control, and manipulation capabilities. Task
decomposition and control hierarchy have not been studied sufficiently for the
telerobotic case. Development of motion primitives and planning of {ine-motion
strategies are important topics for research, The addition of adaptive and learning
strategies to telcoperator systems is also important. The evolution of autonomous
systems from telerobotic systems will require more effective models of human task
planning strategies and task representation. The design of the components and tools
of the space-based environment will depend on a consistent task representation which
evolves to accept autonomous manipulation.

3. Assembly Task Representation’

In our approach to assembly system design, [2,3,4], the planning of assembly of one
product made up of several parts is viewed as a path search in the state space of all
possible configurations of that set of parts. A syntax (or the representation of
assemblies has been developed based on conmtact and attachment rclations. A
decomposable production system implements the backward search for feasible assembly
scquences based on a hierarchy of preconditions: (1) Release of attachments, (2)
Stability of subassemblics, (3) Separability of subassemblies, including (a) Local
analysis of incremental motion, and (b) Global analysis of feasible trajectories.
Because there are many configurations that can be made from the same set of parts,
the branching factor from the initial state to the goal state is greater than che
branching factor [rom the goal state to the initial state. The backward search is

130

therefore more efficient and corresponds in this case to the problem of disassembling
the product using reversible operations. The resulting set of feasible assembly
sequences is represented as an AND/OR graph and used as the basis for enumeration of
solution trees satisfying system and performance requirements.

Figure 1 shows an example of an AND/OR graph representation of assembly sequences
for a simple product with four parts, Each node in the graph corresponds to a
subassembly and is described in the representation by a relational structure using
the syntax of contacts and attachments. The hyperarcs correspond to the disassembly
operations, and the successor nodes to which each hyperarc points correspond to the
resulting subassemblies produced by the disassembly operation. For most products,
the assembly operations usually mate two subassemblies, and the resulting hyperarcs
are typically 2-connectors as in this example.

)] -

0 (24

Figure 1. AND/OR graph rcpresentation of assembly plans for a simple product.

131

A solution tree from a node N in an AND/OR graph is a subgraph that may be defined
recursively as a subset of branching hyperarcs from the original graph. The AND/OR
graph representation therefore encompasses all possible partial orderings of assembly
operations. Moveover, each partial order corresponds to a solution tree from the
node corresponding to the final (assembled) product. The AND/OR graph representation
therefore permits one to explore the space of all possible plans for assembly or
disassembly of the product. The problem of selecting the best assembdly plan may
therefore be viewed as a search problem in the AND/OR graph space, and for some given
evaluation function on the graph, generic search algorithms such as AO® [12] may be
used. In practice, the development of such an evaluation function is very difficult
since it would often depend explicitly on impiementation issucs such as choice of
devices and underlying control strategics. We have explored the assignment of
weights to hyperarcs using criteria of (a) operation complexity, and (b) subassembly
degrees of freeddm, or parts entropy [10). Such an approach is viewed as a
preliminary search procedure which may narrow the search space for later detailed
examination using implementation details. In the simple examples studied, the
resulting ranking of candidate assembly sequences was consistent with intuitive
assessment of complexity.

The representation of assembly plans is particularly important for systems which do
online planning or scheduling. Previous studies of online planning problems (13]
have used discrete sequence representation or precedence diagrams of operations. In
the precedence diagram formalism, typically no single partial order can encompass
every possible assembly sequence. The AND/OR graph represents all possible partial
orderings of operations, and e¢ach partial order corresponds to a solution tree from

the node corresponding to the final product. We have illustrated the use of the
AND/OR graph for online scheduling of a simple robotic workstation with random
presentation of parts {2]. The resulting analysis showed a relative improvement in
efficiency (number of operations required) from fixed sequence operation of 6% for
precedence diagrams and 18% for the AND/OR graph. The principal advantage in this
example was the reduced need for buffering and corresponding retrieval of parts,

The AND/OR graph representation provides a framework for the planning and
scheduling of operations sequences. The problems of testing, disassembly, repair,
and assembly all benefit from a unified representation which encompasses partial
ordering of procedures. Preliminary search of the task space may reduce the
candidate subtrees substantially, but the development of final plans typically
involves directly the implementation and specification of the underlying devices and
motions. In the next section we describe a toof for discrete task planning which

facilitates exploration of alternative sequences of opcrations at the level of parts
configurations.

4. Discrete Task Planning

A scquence of assembly or disassembly subtasks is impiemented by performing
operations on the parts using system resources such as robot hands, fixtures or
sensors. The allocation of these resources and the synthesis of control programs to
coordinate them must be developed in a second leve! of planning. In general, such
operations require detailed motion planning of individual devices and is extremely
difficult. In this section, we describe a definition of discrete operations which
lend themsclves to planning through manipulation of the configuration map relating
input and output configuration states.

Any subtree of the AND/OR graph may be thought of as a subtask precedence graph.

132

and cach branch of the subtask precedence graph defines s process in the
configuration space of the parts. An assembly operation can then be defined by:

Assembly Operation:

Given ¢® == (C°, j°) € C,

control mampnlsuon. sensing, and computation
to achieve ¢ = (C', C r) € T, then

execute operation,

where T == tolerance set,

TCCm Cl x Cj for entities i, j,

is the set of configurations (region of configuration space (14]) for which an
operation on i,j can be successfully performed.

This definition emphasizes the basic problem in assembly as the control over
configuration uncertainty in order to meet tolerance requirements of successive
operations. While it is possible to define probability distributions over
configurations of parts, in practice, it is very difficult to accurately estimate
such distributions, and it is cumbersome to propagate the effect of such
distributions through successive operations in a sequence. The configuration map
used here provides a tool to compute the effect of operations on boundmg sets of
configuration points.

A bounding set B(v) is defined as
B(v) = {possible outcomes of v} .

where v is a2 bounded variable. We can define in turn:

Joint bounding set: B(vl, Vo ooy v.)
Conditional bounding set: B(v,|v,=n) == {v,|(v,,n) € B{v,,v,)}
Sum of bounding sets: A + B = {v]jv = a+bfora € A, b € B}

Scalar multiplication: cA = {v|v == ca for a € A}.

An operation which alters the configuration of a part may be described by a mapping
between the initial configuration, 6{, and the final configuration ©¢. An operation
with a unique mapping occupies a single point in (C-space x C-space) and completely
defines the change in configuration state of the system. In this case, planning of
operations reduces to planning of unique trajectories in configuration space. As
discussed above, such unique mappings are often of limited use due to the
uncertaint y in configurations and the finite tolerance of operations. Then, states
of the objects may be described by bounding sets of points in the configuration
space.

133

The configuration map M(A:, B;) describes a single operation which maps a bounded
set of input points to a bounded set of output points:

M(S,, S,): (8,} — (S;)-

The configuration map takes on logical values in (C-space x C-space) where each
logical *1’ defines a feasible mapping. The configuration map for a rigid part is a
function of twelve dimensions, although in many cases these degrees of freedom are
not of equal interest.

The usefulness of the configuration map representation of operations lies in the
case of combining sequential operations. An operation M,(6;X) followed by an
operation M,(x, ©) is defined as:

M, (0, 8) = MM, = U, {Mya,)M, (4;, a)}.

Sequences of alternative operations may therefore be compared using simple
relations.

The configuration map is particularly useful in cases where inputs and outputs may
be partitioned into bounded sets. If we identify N subintervals B of the output
space and N subintervals of A of the input space, then a symbolic mapping:
M’ = L.!j{.luj x Bj i M(é, a) > 0 }.
defines bounded regions of the configuration map associated with transformations of

bounded sets due to a given operation. A useful instance of the bounded set map
occurs when we let:

Aj =y, ¢ B, MIM('i. a) >0}
Then the configuration map
M’ = U A x Bj

is rectangular and the operation is completely defined by the symbolic map and the
definition of the underlying sets.

The ?roduct of rectangular configuration maps is completely defined by bounding set
opcrations:

2 1
MM, = U, B, x {u, ¢ .xcj A}
where
e, = (kI *A;n'B, #¢).
is the resulting configuration map product.

Figure 2 shows an example of a peg insertion operation in two dimensions, This type
of problem has been studied from the point of view of trajectory planning in
configuration space [15]). The configuration map shown in figure 2 is derived from
such a trajectory analysis and summarizes the input-output relations in a manner
which permits the resulting discrete operation to be integrated into task plan. A

134

different configuration map is developed for each set of discrete operations
parameters, and the ability to form configuration map products permits search over
the space of operations sequences. In figure 2, the x position of the peg is
regarded as the independent variable of the map, and the initial z-position of the
peg is fixed for a given configuration map. The operation moves the peg in 8 -z
direction using a compliant move and directional uncertainty represented by the
velocity cone [16}.

The resulting configuration map in figure 2 has three output bands corresponding to
successful insertion, miss-to-the-left, and miss-to-the- right. These three bands
occur consistently for different paramecter values. Five input bands may then be
reconstructed and labelled defining a partitioning of the input configuration space.
The resulting map may be 'rectangularized® as shown by the dotted arcas, and in that

form the symbolic mapping provide a complete description of the operation and a basis
for search procedures.

CONFIGURATION SPACE

v 4
\]
v
v
1)

X
Velocity Cone
CONFIGURATION MAP
Ay LA Ay Ay Ag X
5 ...'-.: A'_‘: : :
S <!
B, I Sy o
W '
.l ‘.": : .
4 .'-- ...'-. 2l ' : z
X v Qe
" Vo e
5 R 7 =
B, Y, g
B B Vo -
] (] <
S M E
L - ——
c'._ ".
B, Vo QR
Rectangular Map
x'-‘ N ._. '... ".- "

INITIAL POSITION

Figure 2. Configuration map for peg in hole example.

135

An example of a product of configuration maps is shown for a different set of
operations in figure 3. Each of these maps is derived from our analysis of sliding
objects [5,6,7] and corresponds to the orientations of a polygonal object being
pushed by a two-dimensional fence of finite length, Equivalently, the object may be
moving on a conveyor belt past a fixed fence. The independent variable in each map
is the object orientation while the operation parameter is the fence angle. The
uncertainty represented by the finite width bands in the maps is a result of the
unknown support distributions of the objects. In [5,6,7] we derived bounds on the
rates of rotation of such objects and have used these to compute the configuration
maps for this example. The product of configuration maps therefore defines the
bounds on the sets of orientations resulting from successive fence pushing
operations, and can be used as a planning tool for designing sequences of fence push
operations to achieve required goals.

For discrete tasks, the space of all operations sequences may be represented by a
tree. Arcs correspond to operations, and each node represents a set of possible
configuration states after execution of all the operations on the path from the root
to that node. Figure 4 illustrates one such tree which corresponds to sequences of
fence pushing operations for fences of different angles operating on the object shown
in figure 3. The possible configurations of a part at a given node are obtained by
multiplying the configuration maps for the operations on the path from the root to
the node. Traversing the tree in order to search it is facilitated by the ease with
which products of multiple configuration maps can be compuied using the code ‘sets.

s 1 K‘ : H K’ . 1 K,
O [22Z3 :
| 5
M : s :
t . H !
3 [rr77r702.
Ml . :
o oM
's, s /7 RN 2727700212077
8, Rootvnseboss (RN vvorvim
'8, - e ez
'8, %
15 M, A MM,

Figure 3. Product of two configuration maps.

136

-60 +0 0
o
G
*0: 1,201 202: 303 *
/
2k 10 5 2302 4393 40
\

0

LR

o0 1241392303

Qe

X 2o

0

*20: 192, 293; 30 4; 340 5; 591

2

20: 10); 2349 2, 4393

0
./

) Figure 5. Resulting sequence
Figure 4. Tree search for operations sequence. of fence push operations.

Each node is labelled with the subset of the indices j of B for the bands B for the
fence angle of the preceding arc. The goal of this task was to reduce the set of

possible configurations to a narrow range of orientation, and a search strategy was
implemented to reduce the number of output bands to one using the minimum number of
operations.

Scarching this tree of discrete operations cxhaustively is computationally
difficult due to the high branching factor which results from the available set of
fence angles at cach step. Two techniques have been developed to make this search
feasible. First, there are systematic relations among bands for different operations
parameters. Since there are only a few distinct code sets for the output arcs, it is
often possible to systematically choose the subset of arcs which need to be followed
among these outputs. Second, branches of the tree which develop code sets which have
occurred previously in a shorter route may be pruned during search.

Implementation of these search techniques permits solution of the fence sequence
design problem with the resulting design shown in figure 5. This parts feeder design
will align parts with the geometry shown in figure 3 independent of the input
orientation. Bounds on the orientation of the resulting single band are also derived
from the procedure. The output part is then aligned for acquisition or handling by a
robot. Computation for this search problem requires a few seconds of computation.

5. Conclusions

In this paper, we have reviewed several results in asscmbly representation,
discrete task planning, and their relation to underlying control strategies. These
methods of planning and manipulation are important {or applications which will
require autonomous systems to carry out complex tasks in diagnosis, repair, and
assembly in space. The development of such analytical tools and thcir demonstration
in prototype systems will be an important part of the evolution of telerobotic and
autonomous systems for space applications.

137

REFERENCES

(1] A. C. Sanderson and G. Perry, "Sensor-based Robotic Assembly Systems: Research
and Applications in Electronics Manufacturing,” Proceedings of the IEEE, Special
Issue on Robotics, Vol. 71, No. 7, July, 1983,

{2] L. S. Homem-de-Mello and A. C. Sanderson, "AND/OR Grapa Representation of
Assembly Plans,” Proc. 1986 AAAI Conference on Artificial Intelligence, August, 1986,
pp 1113-1119.

(3] A. C. Sanderson and L. S. Homem-de-Mello, "Task Planning and Control Synthesis
for Flexible Assembly Systems,” Proc. NATO Int. Advanced Research Workshop on Machine
Intelligence and Knowledge Engineering for Robotic Applications, May, 1986.

[4] B. H. Krogh and A. C. Sanderson, "Modcling and Control of Assembly Tasks and
Systems,"” CMU Robotics Institute Technical Report, CMU-RI-TR-86-1,] }986.

(5] M. A. Peshkin and A. C. Sanderson, "The Motion of a Pushed, Sliding Object,
Part 1: Sliding Friction,” CMU Robotics Institute Techaical Report, CMU-RI-TR-85-18,
1985.

[6] M. A. Peshkin and A. C. Sanderson, "The Motion of a Pushed, Sliding Object,
Part 2: Contact Friction,” CMU Robotics Institute Technical Report, CMU-RI-TR-86-7,
1986.

[7] M. A, Peshkin and A. C. Sanderson, "Robotic Manipulation of a Sliding Object,”
Proc. 1986 IEEE Int. Conf. on Robotics and Automation, April, 1986,pp 233-239.

[8] M. A. Peshkin and A. C. Sanderson, "Planning Sensorless Robot Manipulation of
Sliding Objects,” Proc. 1986 AAAI Conferénce on Artificiai Intelligence,, August,
1986, pp. 1107-1112,

[9] L. E. Weiss, A. C. Sanderson, and C. P. Neuman, "Dynamic Sensor-based Control
of Robots with Visual Feedback," IEEE Journal of Robotics and Automation, in press,
1986.

(10] A. C. Sanderson, "Parts Entropy Methods for Robotic Assembly System Design,”
Proc. IEEE Int. Conf. on Robotics and Automation, March, 1984, pp. 600-608.

[11] H. W. Stone, A. C. Sanderson, and C. P. Neuman, "Arm Signature

Identification,” Proc. IEEE Int. Conf. on Robotics and Automation, April, 1986, pp.
41-48.

{12] N. 1. Nilsson, Principles of Artificial Intelligence. Springer-Verlag, 1980.

{13] B. R. Fox and K. G. Kempf, "Opportunistic Scheduling for Robotics Assembly.”
1985 IEEE International Confcrence on Robotics and Automation, pp. 880-889, 1985.

(14] T. Lozano-Perez, "Spatial Planning: A Configuration Space Approach." IEEE
Transactions on Computers C-32, 2 (February 1983), 108-120.

(15] T. Lozano-Perez, M. T. Mason, and R. H. Taylor, "A.utomatic Synthesis qf
Fine-Motion Strategies for Robots" Int. Journal of Robotics Research 3,1 (Spring,
1984), 3-24.

[16] M. Erdmann, "Using Backprojections for Fine Motion Planning with Uncertainty®
Int. Journal of Robotics Research 5,1 (Spring, 1986), 19-45.

138

